Leetcode 2584: Split the Array to Make Coprime Products

dume0011
2 min readMar 5, 2023

--

You are given a 0-indexed integer array nums of length n.

A split at an index i where 0 <= i <= n - 2 is called valid if the product of the first i + 1 elements and the product of the remaining elements are coprime.

  • For example, if nums = [2, 3, 3], then a split at the index i = 0 is valid because 2 and 9 are coprime, while a split at the index i = 1 is not valid because 6 and 3 are not coprime. A split at the index i = 2 is not valid because i == n - 1.

Return the smallest index i at which the array can be split validly or -1 if there is no such split.

Two values val1 and val2 are coprime if gcd(val1, val2) == 1 where gcd(val1, val2) is the greatest common divisor of val1 and val2.

Example 1:

Input: nums = [4,7,8,15,3,5]
Output: 2
Explanation: The table above shows the values of the product of the first i + 1 elements, the remaining elements, and their gcd at each index i.
The only valid split is at index 2.

Example 2:

Input: nums = [4,7,15,8,3,5]
Output: -1
Explanation: The table above shows the values of the product of the first i + 1 elements, the remaining elements, and their gcd at each index i.
There is no valid split.

Constraints:

  • n == nums.length
  • 1 <= n <= 10^4
  • 1 <= nums[i] <= 10^6

Problem Analysis:

Assume we find the index i, such that the two parts(0-i, i+1 — n) don’t have common factors.

So we can first count all factors, and iterate to find index i (make no factor exists in two parts).

Solution

class Solution {
public:
int findValidSplit(vector<int>& nums) {
unordered_map<int, int> left, right;
for (const auto& item : nums) {
for (const auto& value : factorial(item))
++right[value];
}

for (int i = 0; i < nums.size() - 1; ++i) {
for (const auto& item : factorial(nums[i])) {
if (--right[item] == 0) left.erase(item);
else ++left[item];
}
if (left.empty()) return i;
}

return -1;
}

vector<int> factorial(int value) {
int max_item{(int)sqrt(value)};
vector<int> res;
for (int i = 2; i <= max_item; i += 1 + (i % 2)) {
if (value % i == 0) {
res.push_back(i);
while (value % i == 0) value /= i;
}
}
if (value > 1) res.push_back(value);

return res;
}
};

Time complexity is O(n)

Space complexity is O(n)

--

--