Given two arrays of length m
and n
with digits 0-9
representing two numbers. Create the maximum number of length k <= m + n
from digits of the two. The relative order of the digits from the same array must be preserved. Return an array of the k
digits.
Note: You should try to optimize your time and space complexity.
Example 1:
Input:
nums1 = [3, 4, 6, 5]
nums2 = [9, 1, 2, 5, 8, 3]
k = 5
Output:
[9, 8, 6, 5, 3]
Example 2:
Input:
nums1 = [6, 7]
nums2 = [6, 0, 4]
k = 5
Output:
[6, 7, 6, 0, 4]
Example 3:
Input:
nums1 = [3, 9]
nums2 = [8, 9]
k = 3
Output:
[9, 8, 9]
Problem Analysis:
At first, we think of simple version — Given one array, return an array of k digits which is maximum number of length k.
vector<int> maxArray(vector<int>& nums, int k) {
vector<int> array(k, 0);
for (int i = 0, j = 0; i < nums.size(); ++i) {
while (nums.size() - i + j > k && j > 0 && array[j - 1] < nums[i]) --j;
if (j < k) array[j++] = nums[i];
}
return array;
}
Then we merge two arrays into an array of k digits which is maximum number of length k.
vector<int> merge(vector<int>& nums1, vector<int>& nums2, int k) {
vector<int> array(k, 0);
for (int i = 0, j = 0, r = 0; r < k; ++r)
array[r] = greater(nums1, i, nums2, j) ? nums1[i++] : nums2[j++];
return array;
}bool greater(vector<int>& nums1, int i, vector<int>& nums2, int j) {
while (i < nums1.size() && j < nums2.size() && nums1[i] == nums2[j]) {
++i;
++j;
}
return j == nums2.size() || (i < nums1.size() && nums1[i] > nums2[j]);
}
we merge two arrays like merge sort, when nums1[i] == nums2[j], we select whether i or j by continuing to compare later numbers follow the arrays.
Finally, we try different length maxArray of the two arrays to find the final answer.
vector<int> maxNumber(vector<int>& nums1, vector<int>& nums2, int k) {
if (k == 0) return {}; vector<int> res;
for (int i = max(0, k - (int)nums2.size()); i <= k && i <= nums1.size(); ++i) {
vector<int> array1 = maxArray(nums1, i);
vector<int> array2 = maxArray(nums2, k - i);
vector<int> data = merge(array1, array2, k);
if (greater(data, 0, res, 0)) res = data;
} return res;
}
Time Complexity: O(k * (nums1.size() + nums2.size()))
Space Complexity: O(k)
reference: https://web.archive.org/web/20160120093629/http://algobox.org/create-maximum-number/